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Inverse Power Lomax Poisson distribution: properties and
applications in modelling negatively-skewed reliability data

A. A. Ogunde', E. F. Nymphas?

Abstract

In this paper, we propose a new, four-parameter distribution with increasing, decreasing,
bathtub-shaped and a unimodal failure rate, called the Inverse Power Lomax Poisson (IPLP)
distribution. The new distribution combines Inverse Power Lomax (IPL) and Poisson
distributions. We derive several properties of the new distribution: its probability density
function, its reliability and failure rate functions, the quantiles, the stress-strength parameter,
complete and incomplete moments, the moment generating function, the probability weighted
moment, Rényi and g-entropies, and order statistics. The study presents the estimation of the
model’s parameters based on the maximum likelihood method. The applications of the new
distribution are presented using two real data sets, showing its flexibility and potential
in modelling lifetime data.

Key words: probability weighted moments, incomplete moments, quantile function, Renyi
entropy.

1. Introduction

The Inverse Power Lomax (IPL) distribution, introduced and developed by Hassan
and Abd-Allah (2019), as a reciprocal of the Power Lomax distribution, contains
distributions with bathtub-shaped and unimodal failure rates, as well as a broader class
of monotone failure rates. The IPL model provides a tractable and close-form solution
to many problems in reliability studies. However, it does not give a reasonably good
parametric fit in some real-life applications most especially when the data is extremely
skewed, Hassan and Abd-Allar (2019). However, several works have been done to
develop new families of probability distributions that extend standard probability
distributions while at the same time making them more flexible and tractable. Abdul-
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Moniem and Abdel-Hameed (2012) studied the exponentiated Lomax distribution.
Lemonte and Cordeiro (2013) studied the properties of beta Lomax, Kumaraswamy
Lomax and McDonald developed the Lomax distributions. Cordeiro et al. (2013)
introduced the gamma-Lomax model. The Weibull Lomax was proposed and studied
by Tabhir et al. (2015). The Gumbel-Lomax distribution was investigated by Tahir et al.
(2016). The type Il Topp Leone power Lomax distribution was studied by Al-Marzouki
et al. (2020), Haq et al. (2020) studied the Marshal-Olkin Power Lomax distribution.
The sine Power Lomax and the sine Inverse Power Lomax distribution was studied by
Nagarjuma and Chesneau (2021, 2022). The Kumaraswamy generalised Inverse Lomax
and the type II Topp-Leone Inverse Power Lomax distributions were proposed and
studied by Ogunde et al. (2023, 2024). They developed the new model using the
Kumaraswamy and type II Topp-Leone generators, respectively.

A random variable X follows the IPL distribution if its cumulative distribution
function (CDF) takes the form

G(x;a,p,l)=(1+§>_p, x>0 a,p,A>0 (1)
The corresponding probability density function (PDF) is
g(x;a,p,2) = t?;_ﬂx—a—l (1 + %)_p_l, x>0; a,p,A>0 (2)
The survival and hazard rate functions of the IPL distribution are, respectively,
S(x;a,p,l)=1—G(x;a,p,/1)=1—(1+§)_p, (3)

and
—an-p—1
. —a-1(q ,x"%
gcapr) _ @px? (“ 7 )

S(a,p,A) - /1{1_(1*‘%)—9} . (4)

h(x;a,p,A) =

Where a and p are positive shape parameters and A is a scale parameter. In the
literature, several authors proposed a new distribution to model lifetime data by
combining some discrete distribution together with other known continuous
distributions. Roman et al. (2012) proposed a long-term exponential geometric
distribution. Recently, compounding distributions for Lomax with discrete one has
been presented by some authors. For instance; the Lomax Poison distribution was
proposed by Abd-Elfattah et al. (2013). Ramos et al. (2013) studied the exponentiated
Lomax Poisson distribution, Al-Zahrani and Sagor (2014) developed and studied the
Lomax-Logarithm distribution. Al-Zahrani (2015) and Hassan and Abd-Alla (2017)
developed the extended Poisson Lomax and the exponentiated Lomax distribution,
respectively. Hassan and Nassr (2018) investigated the properties of the Power Lomax
Poisson distribution. Nargajuma et al. (2022) proposed and studied the Nadarajah—
Haghighi Lomax distribution, among many others.

In this study, we propose and study a new four-parameter distribution, named
the Inverse Power Lomax Poisson (IPLP) distribution, which contains the Inverse
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Power Lomax (IPL), the Inverse Lomax Poisson (/LP), and the Inverse Lomax
distributions as the sub-models. The chief motivation for introducing the IPLP
distribution is that the distribution, due to its flexibility, can accommodate
different forms of the shape of the hazard function. The distribution also provides
a reasonable parametric fit to skewed data that cannot be properly fitted by other
distributions and is a suitable model in other areas such as insurance, seismography,
medicine, actuarial science, demography, reliability, and survival studies.

The paper is organized as follows. In Section 2, we developed the IPLP distribution
and derived its density, survival and hazard rate, camulative, and reversed hazard rate,
and the quantile functions. Some of the properties of the IPLP distribution are given in
Section 3, which includes moments, moment generating functions, incomplete
moments, Renyi and g entropies, probability weighted moments, and order statistics.
Estimation and real data application was demonstrated in Section 4. In Section 5, we
concluded.

2. The Inverse Power Lomax Poisson distribution

Suppose that the random variable X has the IPL distribution, where its cdf and pdf
are given in (1) and (2). Given N, let X;, .. ., X;; be independent and identify distributed
random variables from IPL distribution. Suppose N is distributed according to zero

truncated Poisson distribution with PDF
elqn

TN =n)= 2 n=12., (>0 (5)
Let T = max(Xq, ..., Xy), then the CDF of T/N = n is given by
—a\ —pPNn
Fr/n=n(t) = (1 + %) ) (6)

which is the Exponentiated Inverse Power Lomax distribution with parameters pn, a
and A. The IPLP distribution, represented by IPLP(a, A, p, {), is defined by the
marginal CDF of T, i.e.
l—e_<(1+z%g)_p
F;a,p,4,0) = ——=7— (7)
This newly developed distribution contains the Inverse Lomax and the Inverse
Lomax Poisson distribution. The pdf of the IPLP distribution is given by

—p— x—a —p
aP{x_a_l(1+£%z) ’ 1{e_€(1+_7_) }
fap,2,0) = e : (8)
where a, p, { are positive shape parameters and A is a positive scale parameter. The
reliability (R(x)) and hazard rate ((h(x)) functions, reversed hazard and cumulative
hazard functions of the IPLP distribution are, respectively, given by

—a\—P —a\~P
—¢(1+5— —g(1+5— _
R(x' a' p‘/’{‘ () — 1 _ 1—e ( A ) — e ( A ) —e f‘ (9)

—e~$+1 —e~$+1




160 A. A. Ogunde, E. F. Nymphas: Inverse Power Lomax Poisson distribution...

—a\—P~1 _ x®
ap{x_“_1(1+xT) e ((H 3 )

h(-x; a, p: A: Z) = x—a -p ’ (10)
Ae=¢ e_((HT) -1
e (t
aplx~ %1+ e 1
(p(x; a,p,/l, () = ( - ) x—a\~P ) (11)
A 1—e_((1+T)
and
x—a\ P
H = log (1 - e_{(HT) ) —log(—e~* +1). (12)

The plots of distribution, density and hazard rate functions of the I[PLP distribution
for different values of (a, p, {, A) are given in Figures 1, 2 and 3, respectively.
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Figure 1. Graph of distribution function of /PLP distribution
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Figure 2. Graph of density function of IPLP distribution
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Figure 3. Graph of hazard function of /PLP distribution

From Figure 3, it can be observed that the hazard rate function of the /PLP model
exhibits decreasing, increasing, reversed bathtub, and reversed J-shape curves. This
indicates that the IPLP distribution can be used effectively to model skewed data
exhibiting various shapes of the hazard function.

2.1. Quantiles of the IPLP distribution

The quantile function can be used in the study of some important features and
characteristics of a distribution which includes dispersion, skewness and kurtosis. Also,
the quantiles of a distribution can be employed in data generation from a distribution.
The k" quantile of the IPLP distribution is given by

_1 “Ya
X = {,1 [(—%ln[l +(1-k)(—e + 1)]) o _ 1]} , (13)

which is used for data generation from the /PLP distribution. The median (middle
quartile) and the upper quartiles of the IPLP distribution can be obtained by taking
k = 0.5 and 0.75 respectively.

2.2. Mixture representation of IPLP model

Using the binomial series expansion given by
P
e’ =Yoo (14)

the mixture representation of /PLP model is given by

faap a0 =Lym e (1452

m!(e$-1) 2 (15)

>—[p(m+1)+1]

The expression given in (15) can be described as the Exponentiated Inverse Power
distribution with scale parameter A and shape parameters a and p(m + 1).
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3. Statistical Properties of IPLP distribution

The following properties of the IPLP model are investigated.

3.1. Moments of IPLP distribution

The 7" moments of the IPLP distribution can be expressed as

wr=EQX") = [0 x"f(xap,20)dx (16)
Using (15) in (16) we get
, - 1 o o —ay —[p(Mm+1)+1]
Hr = an(Zmzo m!(e$-1) f—oo X (1 + XT) dx (17)

After some algebraic manipulation, we have

= S o ety BL = /e, ( + S m 4 1)) (18)
The moment generating function of X, M, (t), is given by
Mo(6) = [ e Fxa,p,2,O)ddx = B2 S EQXD). (19)
Using the expression given in (18) for the 7" moments of the IPLP distribution,
we have
M) = 5 S0 ot B =T/, (e + Sm+ 1) (20)
where B(a, b) = rI(WZ:l;)' From the above expression in (20), setting r = 1,2,3,4,5, and

6, respectively, we obtain the first six moments about the origin of IPLP distribution.

The nt" central moment of X, of IPLP model, say uy,, is given as
w= B = ) 7 (),
p=0

The cumulant (&, ) of X can be obtained as
! < n- 1 ’
= Hn — z (T _ 1)K‘r”n—r-
r=0

Table 1 presents the first six moments, standard deviation (o), coefficient of
variation (CV), skewness (S), and kurtosis (k,,) for various values of the parameters
of IPLP distribution. It could be observed that as the values of the parameters increase
the values of the lower moment decrease and increase for higher moments. The same
is observed for skewness and kurtosis except for higher values of the parameters. This
further demonstrates the flexibility of the IPLP model in handling data of different
degree of skewness and kurtosis.
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Table 1. First six moments, g, CV, Sy, and k,, for IPLP distribution

Specification a=70A1=55

p=0.5, p=12, p =25, p =35, p =65,

Moment =05 (=15 =40 (=45 =65
U 0.6525 0.8148 0.9165 0.9015 0.8988

u, 0.4776 0.7011 0.8666 0.8320 0.8161
us 0.3899 0.6448 0.8538 0.7917 0.7498
A 0.3600 0.6491 0.8938 0.7877 0.6989
Us 0.3944 0.7546 1.0413 0.8491 0.6661
U 0.6062 1.2026 1.5792 1.1308 0.6703

g 0.2274 0.1929 0.1632 0.1389 0.0909
cv 0.3485 0.2367 0.1781 0.1541 0.1011
Sk 0.8988 1.8008 24746 2.5583 1.9237
ky, 6.9213 13.0353 20.6319 22.5148 15.7185

3.2. Incomplete moment of IPLP distribution

The r*"* incomplete moments of the IPLP distribution is defined by

(_){f(—)} .

— t r-a-1
@r(t) =apl J_ x prav= ey (21)
Using (14), we can write the expression given in (21) as
—ay —[p(m+1)+1]
_apl oo 1 t —a— x
e (1) = TZm=O mieS—1) f_mxr “t (1 + T) dx (22)
After some algebraic manipulation, we have
{ woo 1 t™*
00 = Somne BlA =T/, Cla+ S+ 5] (@3)

3.3. Reényi and g-entropies of IPLP distribution

Suppose X is a random variable with continuous cumulative distribution function
F(x) and probability density function f(x). Then the fundamental uncertainty
measure for distribution F (named the entropy of F) is defined as I(x) =
E[—log(f(X))]. Statistical entropy is a probabilistic measure of uncertainty, also
ameasure of a reduction in that uncertainty. Numerous entropy and information
indices are considered in the literature, among them the Rényi and q entropy. The
Renyi entropy of a random variable X can be used to obtain the measures of uncertainty
and variation of a system and it is defined (9 > 0 and 0 # 1) as:

1(8) = 5 log[M(d)], (24)
where

M@ = [ 2 s,
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Using
3,070 -9(p+1) w077y’
M(@d) = Lf_";x—a(aﬂ) (1 i xT) {e—z(uT) } dx, (25)

29(—e=%+1)9

After some algebraic manipulation we have

_ w (1) zaﬂal -0(@+1) xa —[8(p+1)+di]
M) = o £ [ (1+%5) dx,  (26)
Further simplification gives
M(@d) = Wi B[a(a+1) 1’2¢x+1 a(a+1)aa{p; (p+1)} 27)

where
a_
6 1 61 s ( 1) {6+Lal
( e (+1)a i!

Finally, we obtain an expression for the Renyl entropy of IPLP distribution as

1 ; d(a+1)-1 2a+1-9d(a+1)—afpi—9(p+1)}
1p(9) = = log {wip [Xe=t 2aizoleD-alpder DI

The g-entropy, Zg, is defined by

(28)

a

1
Zy= . 1109[1 — (g —1)M(9)]

Using M (0), we have

1

_DwiB [a(a +a1) - 1’2a +1-0(a+ 1)a— a{pi—0d(p + 1)}

3.4. Probability Weighted Moments (PWMs)

Probability weighted moments (PWMs) are defined as the expectations of certain
functions of a random variable. They are only considered when the ordinary moments
of the random variable exist. The PWMs method can generally be employed in
estimating the parameters of a distribution whose inverse form cannot be expressed
explicitly. In this paper we obtained PWMs of the IPLP distribution since they can be
used for estimating the IPLP parameters. For a random variable with the pdf f(.) and
cdf F(.), the PWMs function can be obtained as follows:

Ly = EIXPFQOT =[5, 2P (F () f (x)dx (29)
Putting (7) and (8) in (29), followed by algebraic manipulation, we have

apl o (- 1) +j oy ~lp(i+)+1]
Loy = A(—e—(+1)1+r2” 0 ( )+ [ xp “ (1 + T) (30)
Ly -t .
_ pAa (- 1) g i p; P ralp(+))—1]
T (—e S+ DT L J! ()(1+r)(B (1-Ya). a +1
i

Jj=0
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3.5. Order statistics

In real life experiment order statistics plays a very crucial and informative role
in understanding the concepts of system reliability. Randomly selecting samples from
IPLP distribution and arranging them in increasing/decreasing other of magnitude, i.e.
(Ty.p < Ty < =+ < Tp.p), constitute an ordered sample which can be investigated as
order statistics.

3.5.1 Derivation of the j* order statistics

Consider X .,y denoting the j*" ordered sample from the IPLP distribution given
in (8). Then the Probability density for the j order statistics is

1 n-1 n—j
(i ¥) = 5o 16 (G ) g(xgy {1 = 6 (G, W)} (1)
where ¥ = (a, p, {, 1). Further simplification using Taylor series expansion gives
o i n+i-1
£ ¥) = 5o 2o D (I GGy, W g (g, ) (32)
Inserting (7) and (8) in (32) followed by further simplification using Taylor series,
we have
n- j o . .
i+k+1 ]> (l) L7141
i=0 j=
-p(l+1)
X_a_1(1+T)
X (—e~S+1)i+1j (33)

4. Estimation

Let x = x4, X, ..., X, represent a random sample of the IPLP distribution with
unknown parameter vector ¥ = (a, 4, p, {). The log likelihood | = I(x, ¥) for ¥ is

l(x,¥) =log (%)—(a+1);log(xi)+(/)+1);wg( x;a>
x 3, (1+ %)_p (34)

oL ot ot az)T has components
6a'6p'6{'6l p

The score function U(¥) = (

2 =23 log(x)(p + DT, ( l,f‘"é‘)+621 (14 a)_px—alogx (35)

A_tyyp og (145 4¢3, (1450) Ttog (145 " (36)
al n n —a\~P

e f 04
al

S=-t-(+ DI, (38)

A (_‘“)—i_{z
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The maximum likelihood estimate (MLE) & of ¥ is calculated numerically from
the nonlinear equations U(¥) = 0. We use Adequacy Model in R to obtain ¥,

4.1. Real data applications

In this section, we analyze two real data sets to demonstrate the flexibility and
applicability of the proposed IPLP model. The first data set, representing strengths of
1.5 cm glass fibers, was previously studied by Smith and Naylor (1986). The second data
set contain 40 times to failure of turbocharger of one type of engine and was previously
studied by Al Sobhi (2022). The two data sets are carefully selected because they are
negatively skewed and are either over- or under-dispersed. The IPLP model is
compared to the one of the following competitive models: Inverse Lomax Poisson
(ILP), Inverse Power Lomax (IPL), and Inverse Lomax models. In order to have a fair
model comparison, we also use the following measures of goodness-of-fit criteria:
Cramér Von-Mises (CVMS), Anderson-Darling (ADS), Kolmogorov-Smirnov (KSM),
as well as those based on the log-likelihood: minus estimated -2*log-likelihood (-2D),
Akaike information criterion (AICr), consistent Akaike information criterion (CAICT).
The model with the minimum values for CVMS, ADS, KSM, AICr, and CAICr is
considered to provide the best reasonable fits for the proposed data. Table 2 shows the
exploratory data analysis for the two data sets which indicates that data I consist of 63
observations, negatively skewed, over-dispersed, with excess kurtosis of 0.92 that is
leptokurtic. Data set II consist of 40 observations, under-dispersed, with excess kurtosis
of -0.56 that is mesokurtic. Tables 3 and 5 gives the estimate of the parameters of the
distributions considered.

Table 2. Exploratory data analysis of the two data sets

Specification | n | Min. | q, Median | q3 | mean | Max. | Var. | Kurt. | Skew.

Data | 63 | 0.55 | 1.38 1.59 1.69 | 1.51 | 2.24 | 0.11 | 392 | —0.90
Data Il 40 | 1.60 | 495 6.40 7.83 | 6.17 9.0 | 393 | 244 | —0.55

Boxplot for data set |

Tin)

°
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1
1
1
|
1
—_—
§
°

Figure 4. Box plot and the Total time on Test (TTT) plot for data set I
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Figure 4 indicate that data set I is negatively skewed exhibiting an increasing failure

rate.

Table 3. MLEs, their standard error (in parenthesis), confidence interval (curly) bracket for data set I

Model a A p 4
IPLP | 12.3939(0.7202) | 0.0025(0.0007) —2.7082(1.329) | 0.2541(0.1010)
{10.9823,13.8055} | {0.0011,0.0039} | {-~5.3130,—1033} | {0.0561,0.4521}
ILP - 0.3638(0.1939) —2.2028(2.0980) 0.6170(0.3486)
(-) {-0.0162,0.7438} | {—6.3149,1.9093} | {—0.0663,1.3003}
IPL 11.5729(0.5958) 0.0021(0.0004) 0.4419(0.0615) -
{10.4051,12,7407} | {0.0013,0.0029} {0.3214,0.5624} =)
IL - 10.7375(5.8660) 15.5166(8.3418) -
=) {—0.7599,22.2349} | {-0.8333,31.8665} (=)
Table 4. Measures of goodness-of-fit value for data set I
Model | -2I AlCr BICr | HQICr | CAICr | KSN ADS | CVMS PV
IPLP |25.46 33.46 42.029 [36.83 34.15 [0.1188 |0.8358 [0.1521 |0.3358
ILP |57.42 63.42 69.851 |65.95 63.83 0.2364 |3.2897 |0.6001 [0.0017
IPL |30.38 36.39 42.816 |38.83 36.79 |0.1643 [1.3963 0.2534 |0.0666
IL 182.48 | 186.48 190.76 [188.16 |186.68 0.4889 |4.5411 |0.8360 |1.7e-13

From Table 4 it can be observed that the new developed inverse Power Lomax

Poisson model has better fit than other three notable competitive models because it
possessed the smallest value of the AICr, CAICr, BICr, HQICr, KSM, ADS and CVMS
as well as largest PV value in modeling the glass fiber data.

Estimated Pdfs data set|

PLP
PL
P
N [

05

N

w1

00

Figure 5. Graph of the fitted density for data set I
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Figure 5 clearly indicates that [PLP model provides a better fit than all other models

considered in the study.

Boxplot for data set Il

Tliln)

0.0 oz 04

Figure 6. Box plot and the Total time on Test (TTT) plot for data set II

o6 oa 10

Figure 6 indicates that data set II is negatively skewed without any form of outlier

exhibiting an increasing failure rate.

Table 5. MLEs, their standard error (in parenthesis), confidence interval (curly) bracket for data

set II
Model a A p ¢
IPLP | 1.8844(0.2453) 0.0077(0.0040) 29.9580(20.5404) 2.2498(0.3983)
{1.6391,2.3652} {-0.0001,0.0117} {—10.3011,50.4984} | {1.4691,2.6481}
ILP - 10.4091(1.5213) —9.8683(0.3210) | 5.6043(1.2456)
=) (7.4274,11.9304} | {~10.4975,—9.2391} | {3.1629,8.0457}
IPL | 3.5615(0.2042) | 0.0025(0.0006) - -
{3.1613,3.5615} {0.0013,0.0031} =) )
IL - 7.4952(8.9801) 39.5313(6.7337) -
) {~10.1058,25.0962} | {26.3333,52.7294} =)
Table 6. Measures of goodness-of-fit value for data set II
Model -2l AlICr BICr | CAICr | HQICr | KSM ADS CVMS PV
IPLP 170.08 | 178.08 184.83 179.22 180.52 [0.1038 |0.7661 0.1069 {0.7817
ILP 231.62 | 237.62 |242.69 [238.29 |239.56 |0.4346 |[2.0806 |0.3355 |[5.5e-07
IPL 182.12 | 188.12 | 193.19 |188.79 189.96 |0.1756 1.5482 10.2406 |0.1698
IL 288.66 [232.67 |236.04 [232.99 |233.89 |0.4411 2.2521 0.3673 3.5e-07

From Table 6 it can be observed that the new developed Inverse Power Lomax
Poisson model has better fit than other three notable competitive models because it
possesses the smallest value of AICr, CAICr, BICr, HQICr, KSM, ADS and CVMS as

well as the largest PV value in modeling the turbocharger data.
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Figure 7. Graph of the fitted density for data set IT

Figure 7 clearly indicates that [P LP model provides a better fit than all other models
considered in the study.

Table 7. LR test for the two data sets

Model Hypothesis LR P —value
Data set I
IPLP vs ILP Hy:a =1wvs.Hy: Hyis false 31.96 < 0.001
IPLP vs IPL Hy:{ =1vs.Hy: Hyis false 4.92 < 0.00
IPLP vs IL Hy:a = =1vs.Hy: Hyis false 157.02 < 0.001
Data setII
IPLP vs ILP Hy:a =1wvs.Hy: Hyis false 61.54 < 0.001
IPLP vs IPL Hy:{ =1vs.Hy: Hyis false 12.04 < 0.001
IPLP vs IL Hy:a = =1vs.Hy: Hyis false 58.58 < 0.001

It can be observed from Table 7 that in each of the cases considered we accept the

alternative hypothesis which is enough evidence that the /PLP model has a better fit

than all other models considered for the two data sets and can effectively be used for
fitting the data.

5. Concluding remarks

We have developed and studied the IPLP distribution along with its properties
such as moments, incomplete moments, weighted moments, moment generating

functions, Rényi and q entropies, Bonferroni and Lorenz curves, reliability studies,

stress-strength reliability and multi component stress-strength reliability model.
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Maximum likelihood estimates are computed. Goodness-of-fit shows that the IPLP
distribution is a better fit. Applications of the IPLP model to glass fiber and
turbocharger data are presented to demonstrate its greater significance and better
flexibility. We have shown that the /PLP distribution empirically provides reasonable
fit for both the glass fiber and turbocharger data as supported by the graph of fitted
densities and the likelihood ratio test statistics. In view of the shapes of the density and
failure rate function, it can be concluded that the proposed model is a suitable candidate
model in reliability analysis, data modeling, and other related fields. For future study,
bivariate extension of the Inverse Power Lomax Poisson model can be considered.
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