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Inverse Power Lomax Poisson distribution: properties and 
applications in modelling negatively-skewed reliability data 

A. A. Ogunde1, E. F. Nymphas2  

Abstract 

In this paper, we propose a new, four-parameter distribution with increasing, decreasing, 
bathtub-shaped and a unimodal failure rate, called the Inverse Power Lomax Poisson (IPLP) 
distribution. The new distribution combines Inverse Power Lomax (IPL) and Poisson 
distributions. We derive several properties of the new distribution: its probability density 
function, its reliability and failure rate functions, the quantiles, the stress-strength parameter, 
complete and incomplete moments, the moment generating function, the probability weighted 
moment, Rѐnyi and q-entropies, and order statistics. The study presents the estimation of the 
model’s parameters based on the maximum likelihood method. The applications of the new 
distribution are presented using two real data sets, showing its flexibility and potential  
in modelling lifetime data. 

Key words: probability weighted moments, incomplete moments, quantile function, Renyi 
entropy. 

1.  Introduction 

The Inverse Power Lomax (IPL) distribution, introduced and developed by Hassan 
and Abd-Allah (2019), as a reciprocal of the Power Lomax distribution, contains 
distributions with bathtub-shaped and unimodal failure rates, as well as a broader class 
of monotone failure rates. The IPL model provides a tractable and close-form solution 
to many problems in reliability studies. However, it does not give a reasonably good 
parametric fit in some real-life applications most especially when the data is extremely 
skewed, Hassan and Abd-Allar (2019). However, several works have been done to 
develop new families of probability distributions that extend standard probability 
distributions while at the same time making them more flexible and tractable. Abdul-
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Moniem and Abdel-Hameed (2012) studied the exponentiated Lomax distribution. 
Lemonte and Cordeiro (2013) studied the properties of beta Lomax, Kumaraswamy 
Lomax and McDonald developed the Lomax distributions. Cordeiro et al. (2013) 
introduced the gamma-Lomax model. The Weibull Lomax was proposed and studied 
by Tahir et al. (2015). The Gumbel-Lomax distribution was investigated by Tahir et al. 
(2016).  The type II Topp Leone power Lomax distribution was studied by Al-Marzouki 
et al. (2020), Haq et al. (2020) studied the Marshal-Olkin Power Lomax distribution. 
The sine Power Lomax and the sine Inverse Power Lomax distribution was studied by 
Nagarjuma and Chesneau (2021, 2022). The Kumaraswamy generalised Inverse Lomax 
and the type II Topp-Leone Inverse Power Lomax distributions were proposed and 
studied by Ogunde et al. (2023, 2024). They developed the new model using the 
Kumaraswamy and type II Topp-Leone generators, respectively. 

A random variable 𝑋𝑋 follows the 𝐼𝐼𝐼𝐼𝐼𝐼 distribution if its cumulative distribution 
function (𝐶𝐶𝐶𝐶𝐶𝐶) takes the form 

𝐺𝐺(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆) = �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−𝜌𝜌

, 𝑥𝑥 > 0;  𝛼𝛼,𝜌𝜌, 𝜆𝜆 > 0                              (1) 
The corresponding probability density function (𝑃𝑃𝑃𝑃𝑃𝑃) is 

𝑔𝑔(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆) = 𝛼𝛼𝛼𝛼
𝜆𝜆
𝑥𝑥−𝛼𝛼−1 �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−𝜌𝜌−1

,   𝑥𝑥 > 0;  𝛼𝛼,𝜌𝜌, 𝜆𝜆 > 0                    (2) 
The survival and hazard rate functions of the 𝐼𝐼𝐼𝐼𝐼𝐼 distribution are, respectively, 

𝑆𝑆(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆) = 1 − 𝐺𝐺(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆) = 1 − �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−𝜌𝜌

 ,                         (3) 
and 

ℎ(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆) = 𝑔𝑔(𝑥𝑥;𝛼𝛼,𝜌𝜌,𝜆𝜆)
𝑆𝑆(𝑥𝑥;𝛼𝛼,𝜌𝜌,𝜆𝜆)

̇ =
𝛼𝛼𝛼𝛼𝛼𝛼−𝛼𝛼−1�1+𝑥𝑥

−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌−1

𝜆𝜆�1−�1+𝑥𝑥
−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌
�

 .                                (4) 

Where 𝛼𝛼 and 𝜌𝜌 are positive shape parameters and 𝜆𝜆 is a scale parameter. In the 
literature, several authors proposed a new distribution to model lifetime data by 
combining some discrete distribution together with other known continuous 
distributions. Roman et al. (2012) proposed a long-term exponential geometric 
distribution. Recently, compounding distributions for Lomax with discrete one has 
been presented by some authors. For instance; the Lomax Poison distribution was 
proposed by Abd-Elfattah et al. (2013). Ramos et al. (2013) studied the exponentiated 
Lomax Poisson distribution, Al-Zahrani and Sagor (2014) developed and studied the 
Lomax-Logarithm distribution. Al-Zahrani (2015) and Hassan and Abd-Alla (2017) 
developed the extended Poisson Lomax and the exponentiated Lomax distribution, 
respectively. Hassan and Nassr (2018) investigated the properties of the Power Lomax 
Poisson distribution. Nargajuma et al. (2022) proposed and studied the Nadarajah–
Haghighi Lomax distribution, among many others. 

In this study, we propose and study a new four-parameter distribution, named 
the Inverse Power Lomax Poisson (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) distribution, which contains the Inverse 
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Power Lomax (IPL), the Inverse Lomax Poisson (𝐼𝐼𝐼𝐼𝐼𝐼), and the Inverse Lomax 
distributions as the sub-models. The chief motivation for introducing the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 
distribution is that the distribution, due to its flexibility, can accommodate 
different forms of the shape of the hazard function. The distribution also provides 
a reasonable parametric fit to skewed data that cannot be properly fitted by other 
distributions and is a suitable model in other areas such as insurance, seismography, 
medicine, actuarial science, demography, reliability, and survival studies.  

The paper is organized as follows. In Section 2, we developed the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution 
and derived its density, survival and hazard rate, cumulative, and reversed hazard rate, 
and the quantile functions. Some of the properties of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution are given in 
Section 3, which includes moments, moment generating functions, incomplete 
moments, Renyi and 𝑞𝑞 entropies, probability weighted moments, and order statistics. 
Estimation and real data application was demonstrated in Section 4. In Section 5, we 
concluded.  

2. The Inverse Power Lomax Poisson distribution  

Suppose that the random variable X has the 𝐼𝐼𝐼𝐼𝐼𝐼 distribution, where its cdf and pdf 
are given in (1) and (2). Given 𝑁𝑁, let 𝑋𝑋1, . . ., 𝑋𝑋𝑛𝑛 be independent and identify distributed 
random variables from 𝐼𝐼𝐼𝐼𝐼𝐼 distribution. Suppose 𝑁𝑁 is distributed according to zero 
truncated Poisson distribution with 𝑃𝑃𝑃𝑃𝑃𝑃 

𝑇𝑇(𝑁𝑁 = 𝑛𝑛) = 𝑒𝑒𝜁𝜁𝜁𝜁𝑛𝑛

𝑛𝑛!�1−𝑒𝑒−𝜁𝜁�
 ,                𝑛𝑛 = 1,2, … ,   𝜁𝜁 > 0                            (5) 

Let 𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋1, … ,𝑋𝑋𝑁𝑁), then the CDF of 𝑇𝑇 𝑁𝑁⁄ = 𝑛𝑛 is given by 

𝐹𝐹𝑇𝑇 𝑁𝑁=𝑛𝑛⁄ (𝑡𝑡) = �1 + 𝑡𝑡−𝛼𝛼

𝜆𝜆
�
−𝜌𝜌𝜌𝜌

,                                                     (6) 
which is the Exponentiated Inverse Power Lomax distribution with parameters 𝜌𝜌𝜌𝜌, 𝛼𝛼 
and 𝜆𝜆. The 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution, represented by 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝛼𝛼, 𝜆𝜆, 𝜌𝜌, 𝜁𝜁), is defined by the 
marginal 𝐶𝐶𝐶𝐶𝐶𝐶 of 𝑇𝑇, i.e. 

𝐹𝐹(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆, 𝜁𝜁) = 1−𝑒𝑒
−𝜁𝜁�1+𝑥𝑥

−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌

−𝑒𝑒−𝜁𝜁+1
,                                                (7) 

This newly developed distribution contains the Inverse Lomax and the Inverse 
Lomax Poisson distribution. The pdf of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution is given by 

𝑓𝑓(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆, 𝜁𝜁) =
𝛼𝛼𝛼𝛼𝜁𝜁𝑥𝑥−𝛼𝛼−1�1+𝑥𝑥

−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌−1
�𝑒𝑒

−𝜁𝜁�1+𝑥𝑥
−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌

�

𝜆𝜆(−𝑒𝑒−𝜁𝜁+1)
,                             (8) 

where 𝛼𝛼, 𝜌𝜌, 𝜁𝜁 are positive shape parameters and 𝜆𝜆 is a positive scale parameter. The 
reliability (𝑅𝑅(𝑥𝑥)) and hazard rate ((ℎ(𝑥𝑥)) functions, reversed hazard and cumulative 
hazard functions of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution are, respectively, given by 

𝑅𝑅(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆, 𝜁𝜁) = 1 − 1−𝑒𝑒
−𝜁𝜁�1+𝑡𝑡

−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌

−𝑒𝑒−𝜁𝜁+1
=   𝑒𝑒

−𝜁𝜁�1+𝑡𝑡
−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌

−𝑒𝑒−𝜁𝜁

−𝑒𝑒−𝜁𝜁+1
,                        (9) 



160                                          A. A. Ogunde, E. F. Nymphas: Inverse Power Lomax Poisson distribution… 
 

 

 

ℎ(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆, 𝜁𝜁) =
𝛼𝛼𝛼𝛼𝜁𝜁𝑥𝑥−𝛼𝛼−1�1+𝑥𝑥

−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌−1
𝑒𝑒
−𝜁𝜁�1+𝑥𝑥

−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌

𝜆𝜆𝑒𝑒−𝜁𝜁�𝑒𝑒
−𝜁𝜁�1+𝑥𝑥

−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌

−1�

,                             (10) 

𝜑𝜑(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆, 𝜁𝜁) =
𝛼𝛼𝛼𝛼𝜁𝜁𝑥𝑥−𝛼𝛼−1�1+𝑥𝑥

−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌−1
𝑒𝑒
−𝜁𝜁�1+𝑥𝑥

−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌

𝜆𝜆�1−𝑒𝑒
−𝜁𝜁�1+𝑥𝑥

−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌

�

,                            (11) 

and  

𝐻𝐻 = 𝑙𝑙𝑙𝑙𝑙𝑙 �1 − 𝑒𝑒−𝜁𝜁�1+
𝑥𝑥−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌

� − 𝑙𝑙𝑙𝑙𝑙𝑙�−𝑒𝑒−𝜁𝜁 + 1�.                           (12) 

The plots of distribution, density and hazard rate functions of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution 
for different values of (𝛼𝛼, 𝜌𝜌, 𝜁𝜁, 𝜆𝜆) are given in Figures 1, 2 and 3, respectively. 

 

 
Figure 1. Graph of distribution function of 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution 

 
Figure 2. Graph of density function of 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution 
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Figure 3. Graph of hazard function of 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution 

From Figure 3, it can be observed that the hazard rate function of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 model 
exhibits decreasing, increasing, reversed bathtub, and reversed J-shape curves. This 
indicates that the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution can be used effectively to model skewed data 
exhibiting various shapes of the hazard function. 

2.1. Quantiles of the 𝑰𝑰𝑰𝑰𝑰𝑰𝑷𝑷 distribution  

The quantile function can be used in the study of some important features and 
characteristics of a distribution which includes dispersion, skewness and kurtosis. Also, 
the quantiles of a distribution can be employed in data generation from a distribution.  
The 𝑘𝑘𝑡𝑡ℎ quantile of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution is given by 

𝑥𝑥𝑘𝑘 = �𝜆𝜆 ��− 1
𝜁𝜁
𝑙𝑙𝑙𝑙[1 + (1 − 𝑘𝑘)(−𝑒𝑒−𝜁𝜁 + 1)]�

−1 𝜌𝜌�
− 1��

−1 𝛼𝛼�

,                  (13) 

which is used for data generation from the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution. The median (middle 
quartile) and the upper quartiles of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution can be obtained by taking 
𝑘𝑘 = 0.5 and 0.75 respectively. 

2.2. Mixture representation of 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 model 

Using the binomial series expansion given by  
𝑒𝑒𝑧𝑧 = ∑ 𝑧𝑧𝑝𝑝

𝑝𝑝!
∞
𝑝𝑝=0 ,                                                         (14) 

the mixture representation of 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 model is given by 

𝑓𝑓(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆, 𝜁𝜁) = 𝛼𝛼𝛼𝛼𝜁𝜁
𝜆𝜆
∑ 1

𝑚𝑚!(𝑒𝑒𝜁𝜁−1)
∞
𝑚𝑚=0 𝑥𝑥−𝛼𝛼−1 �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−[𝜌𝜌(𝑚𝑚+1)+1]

 .              (15) 

The expression given in (15) can be described as the Exponentiated Inverse Power 
distribution with scale parameter 𝜆𝜆 and shape parameters 𝛼𝛼 and 𝜌𝜌(𝑚𝑚 + 1). 
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3. Statistical Properties of 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 distribution 

The following properties of the IPLP model are investigated. 

3.1. Moments of 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 distribution 

The 𝑟𝑟𝑡𝑡ℎ moments of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution can be expressed as  

𝜇𝜇𝑟𝑟′ = 𝐸𝐸(𝑋𝑋𝑟𝑟) = ∫ 𝑥𝑥𝑟𝑟𝑓𝑓(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆, 𝜁𝜁)𝑑𝑑𝑑𝑑∞
−∞                                         (16) 

Using (15) in (16) we get 

𝜇𝜇𝑟𝑟′ = 𝛼𝛼𝛼𝛼𝜁𝜁
𝜆𝜆
∑ 1

𝑚𝑚!(𝑒𝑒𝜁𝜁−1)
∞
𝑚𝑚=0 ∫ 𝑥𝑥𝑟𝑟−𝛼𝛼−1 �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−[𝜌𝜌(𝑚𝑚+1)+1]

𝑑𝑑𝑑𝑑∞
−∞                 (17) 

After some algebraic manipulation, we have 

𝜇𝜇𝑟𝑟′ = 𝜌𝜌𝜁𝜁
𝜆𝜆𝑟𝑟 𝛼𝛼⁄

∑ (−1)𝑚𝑚

𝑚𝑚!�𝑒𝑒𝜁𝜁−1�
∞
𝑚𝑚=0 𝐵𝐵[(1 − 𝑟𝑟 𝛼𝛼⁄ ), (𝑟𝑟 𝛼𝛼⁄ + 𝜁𝜁(𝑚𝑚 + 1)]                        (18) 

The moment generating function of  𝑋𝑋, 𝑀𝑀𝑥𝑥(𝑡𝑡), is given by  

𝑀𝑀𝑥𝑥(𝑡𝑡) = ∫ 𝑒𝑒𝑡𝑡𝑡𝑡∞
−∞ 𝑓𝑓(𝑥𝑥;𝛼𝛼,𝜌𝜌, 𝜆𝜆, 𝜁𝜁)𝑑𝑑𝑑𝑑 = ∑ 𝑡𝑡𝑟𝑟

𝑟𝑟!
∞
𝑟𝑟=0 𝐸𝐸(𝑋𝑋𝑟𝑟).                            (19) 

Using the expression given in (18) for the 𝑟𝑟𝑡𝑡ℎ moments of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution, 
we have 

𝑀𝑀𝑥𝑥(𝑡𝑡) = 𝜌𝜌𝜁𝜁
𝜆𝜆𝑟𝑟 𝛼𝛼⁄

∑ 𝑡𝑡𝑟𝑟

𝑚𝑚!𝑟𝑟!�𝑒𝑒𝜁𝜁−1�
∞
𝑚𝑚=0 𝐵𝐵[(1 − 𝑟𝑟 𝛼𝛼⁄ ), (𝑟𝑟 𝛼𝛼⁄ + 𝜁𝜁(𝑚𝑚 + 1)],                (20) 

where 𝐵𝐵(𝑎𝑎, 𝑏𝑏) = 𝛤𝛤𝛤𝛤𝛤𝛤𝛤𝛤
𝛤𝛤(𝑎𝑎+𝑏𝑏)

. From the above expression in (20), setting 𝑟𝑟 = 1,2,3,4,5, and 

6, respectively, we obtain the first six moments about the origin of 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution. 

The 𝑛𝑛𝑡𝑡ℎ central moment of 𝑋𝑋, of 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 model, say 𝜇𝜇𝑛𝑛, is given as 

𝜇𝜇𝑛𝑛 = 𝐸𝐸(𝑥𝑥 − 𝜇𝜇)𝑛𝑛 = �(−1)𝑝𝑝 �
𝑛𝑛
𝑝𝑝
�

∞

𝑝𝑝=0

𝜇𝜇𝑟𝑟
′𝑝𝑝𝜇𝜇𝑛𝑛−𝑝𝑝′ . 

The cumulant (ҡ𝑛𝑛) of X can be obtained as 

ҡ𝑛𝑛 = 𝜇𝜇𝑛𝑛′ −��
𝑛𝑛 − 1
𝑟𝑟 − 1

�ҡ𝑟𝑟𝜇𝜇𝑛𝑛−𝑟𝑟′
𝑛𝑛−1

𝑟𝑟=0

. 

Table 1 presents the first six moments, standard deviation (𝜎𝜎), coefficient of 
variation (CV), skewness (𝑆𝑆𝑘𝑘), and kurtosis (𝑘𝑘𝑢𝑢) for various values of the parameters 
of 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution. It could be observed that as the values of the parameters increase 
the values of the lower moment decrease and increase for higher moments. The same 
is observed for skewness and kurtosis except for higher values of the parameters. This 
further demonstrates the flexibility of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 model in handling data of different 
degree of skewness and kurtosis. 
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Table 1. First six moments, 𝜎𝜎, 𝐶𝐶𝐶𝐶, 𝑆𝑆𝑘𝑘, and 𝑘𝑘𝑢𝑢 for 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution 

Specification 𝛼𝛼 = 7.0,𝜆𝜆 = 5.5 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜌𝜌 = 0.5, 
𝜁𝜁 = 0.5 

𝜌𝜌 = 1.2, 
𝜁𝜁 = 1.5 

𝜌𝜌 = 2.5, 
𝜁𝜁 = 4.0 

𝜌𝜌 = 3.5, 
𝜁𝜁 = 4.5 

𝜌𝜌 = 6.5, 
𝜁𝜁 = 6.5 

𝜇𝜇1′  0.6525 0.8148 0.9165 0.9015 0.8988 
𝜇𝜇2′  0.4776 0.7011 0.8666 0.8320 0.8161 
𝜇𝜇3′  0.3899 0.6448 0.8538 0.7917 0.7498 
𝜇𝜇4′  0.3600 0.6491 0.8938 0.7877 0.6989 
𝜇𝜇5′  0.3944 0.7546 1.0413 0.8491 0.6661 
𝜇𝜇6′  0.6062 1.2026 1.5792 1.1308 0.6703 
𝜎𝜎 0.2274 0.1929 0.1632 0.1389 0.0909 
𝐶𝐶𝐶𝐶 0.3485 0.2367 0.1781 0.1541 0.1011 
𝑆𝑆𝑘𝑘 0.8988 1.8008 2.4746 2.5583 1.9237 
𝑘𝑘𝑢𝑢 6.9213 13.0353 20.6319 22.5148 15.7185 

3.2. Incomplete moment of IPLP distribution 

The 𝑟𝑟𝑡𝑡ℎ incomplete moments of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution is defined by   

𝜑𝜑𝑟𝑟(𝑡𝑡) = 𝛼𝛼𝛼𝛼𝜁𝜁 ∫ 𝑥𝑥𝑟𝑟−𝛼𝛼−1
�1+𝑥𝑥

−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌−1
�𝑒𝑒

−𝜁𝜁�1+𝑥𝑥
−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌

�

𝜆𝜆(−𝑒𝑒−𝜁𝜁+1)
𝑑𝑑𝑑𝑑𝑡𝑡

−∞                             (21) 

Using (14), we can write the expression given in (21) as 

𝜑𝜑𝑟𝑟(𝑡𝑡) = 𝛼𝛼𝛼𝛼𝜁𝜁
𝜆𝜆
∑ 1

𝑚𝑚!(𝑒𝑒𝜁𝜁−1)
∞
𝑚𝑚=0 ∫ 𝑥𝑥𝑟𝑟−𝛼𝛼−1 �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−[𝜌𝜌(𝑚𝑚+1)+1]

𝑑𝑑𝑑𝑑𝑡𝑡
−∞                 (22) 

After some algebraic manipulation, we have 

𝜑𝜑𝑟𝑟(𝑡𝑡) = 𝜌𝜌𝜁𝜁
𝜆𝜆𝑟𝑟 𝛼𝛼⁄

∑ 1
𝑚𝑚!�𝑒𝑒𝜁𝜁−1�

∞
𝑚𝑚=0 𝐵𝐵 �(1 − 𝑟𝑟 𝛼𝛼⁄ ), (𝑟𝑟 𝛼𝛼⁄ + 𝜁𝜁(𝑚𝑚 + 1); 𝑡𝑡

−𝛼𝛼

𝜆𝜆
�.               (23) 

3.3. Rѐnyi and 𝒒𝒒-entropies of 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 distribution 

Suppose 𝑋𝑋 is a random variable with continuous cumulative distribution function 
𝐹𝐹(𝑥𝑥) and probability density function 𝑓𝑓(𝑥𝑥). Then the fundamental uncertainty 
measure for distribution 𝐹𝐹 (named the entropy of F) is defined as 𝐼𝐼(𝑥𝑥)  =
 𝐸𝐸[− 𝑙𝑙𝑙𝑙𝑙𝑙(𝑓𝑓(𝑋𝑋))]. Statistical entropy is a probabilistic measure of uncertainty, also 
a measure of a reduction in that uncertainty. Numerous entropy and information 
indices are considered in the literature, among them the Rényi and 𝑞𝑞 entropy. The 
Rѐnyi entropy of a random variable X can be used to obtain the measures of uncertainty 
and variation of a system and it is defined (𝜕𝜕 > 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜕𝜕 ≠ 1) as:  

𝐼𝐼𝑅𝑅(𝜕𝜕) = 1
1−𝜕𝜕

𝑙𝑙𝑙𝑙𝑙𝑙[𝑀𝑀(𝜕𝜕)],                                                  (24) 
where 

𝑀𝑀(𝜕𝜕) = � 𝑓𝑓𝜕𝜕
∞

−∞

(𝑥𝑥)𝑑𝑑𝑑𝑑, 
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Using  

𝑀𝑀(𝜕𝜕) = 𝛼𝛼𝜕𝜕𝜌𝜌𝜕𝜕𝜁𝜁𝜕𝜕

𝜆𝜆𝜕𝜕(−𝑒𝑒−𝜁𝜁+1)𝜕𝜕 ∫ 𝑥𝑥−𝜕𝜕(𝛼𝛼+1) �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−𝜕𝜕(𝜌𝜌+1)

�𝑒𝑒−𝜁𝜁�1+
𝑥𝑥−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌

�
𝜕𝜕

∞
−∞ 𝑑𝑑𝑑𝑑,          (25) 

After some algebraic manipulation we have 

𝑀𝑀(𝜕𝜕) = 𝛼𝛼𝜕𝜕𝜌𝜌𝜕𝜕

𝜆𝜆𝜕𝜕(−𝑒𝑒−𝜁𝜁+1)𝜕𝜕
∑ (−1)𝑖𝑖𝜁𝜁𝜕𝜕+𝑖𝑖𝜕𝜕𝑖𝑖

𝑖𝑖!
∞
𝑖𝑖=1 ∫ 𝑥𝑥−𝜕𝜕(𝛼𝛼+1) �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−[𝜕𝜕(𝜌𝜌+1)+𝜕𝜕𝜕𝜕]∞

−∞ 𝑑𝑑𝑑𝑑,         (26) 

Further simplification gives 
𝑀𝑀(𝜕𝜕) = 𝑊𝑊𝑖𝑖𝐵𝐵 �𝜕𝜕(𝛼𝛼+1)−1

𝛼𝛼
, 2𝛼𝛼+1−𝜕𝜕(𝛼𝛼+1)−𝛼𝛼{𝜌𝜌𝜌𝜌−𝜕𝜕(𝜌𝜌+1)}

𝛼𝛼
�                         (27) 

where  

𝑊𝑊𝑖𝑖 =
𝛼𝛼𝜕𝜕−1𝜌𝜌𝜕𝜕𝜆𝜆

𝜕𝜕−1
𝛼𝛼

(−𝑒𝑒−𝜁𝜁 + 1)𝜕𝜕
�

(−1)𝑖𝑖𝜁𝜁𝜕𝜕+𝑖𝑖𝜕𝜕𝑖𝑖

𝑖𝑖!

∞

𝑖𝑖=1

. 

Finally, we obtain an expression for the Renyi entropy of IPLP distribution as  

𝐼𝐼𝑅𝑅(𝜕𝜕) = 1
1−𝜕𝜕

𝑙𝑙𝑙𝑙𝑙𝑙 �𝑊𝑊𝑖𝑖𝐵𝐵 �𝜕𝜕(𝛼𝛼+1)−1
𝛼𝛼

, 2𝛼𝛼+1−𝜕𝜕(𝛼𝛼+1)−𝛼𝛼{𝜌𝜌𝜌𝜌−𝜕𝜕(𝜌𝜌+1)}
𝛼𝛼

��,          (28) 

The q-entropy, 𝑍𝑍𝑞𝑞, is defined by 

𝑍𝑍𝑞𝑞 =
1

𝑞𝑞 − 1
𝑙𝑙𝑙𝑙𝑙𝑙[1 − (𝑞𝑞 − 1)𝑀𝑀(𝜕𝜕)] 

Using 𝑀𝑀(𝜕𝜕), we have 

𝑍𝑍𝑞𝑞 =
1

𝑞𝑞 − 1
𝑙𝑙𝑙𝑙𝑙𝑙 �1 − (𝑞𝑞

− 1)𝑊𝑊𝑖𝑖𝐵𝐵 �
𝜕𝜕(𝛼𝛼 + 1) − 1

𝛼𝛼
,
2𝛼𝛼 + 1 − 𝜕𝜕(𝛼𝛼 + 1) − 𝛼𝛼{𝜌𝜌𝜌𝜌 − 𝜕𝜕(𝜌𝜌 + 1)}

𝛼𝛼
�� 

3.4. Probability Weighted Moments (PWMs) 

Probability weighted moments (PWMs) are defined as the expectations of certain 
functions of a random variable. They are only considered when the ordinary moments 
of the random variable exist. The PWMs method can generally be employed in 
estimating the parameters of a distribution whose inverse form cannot be expressed 
explicitly. In this paper we obtained PWMs of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution since they can be 
used for estimating the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 parameters. For a random variable with the pdf 𝑓𝑓(. ) and 
cdf 𝐹𝐹(. ), the PWMs function can be obtained as follows:  

𝛤𝛤𝑝𝑝,𝑟𝑟 = 𝐸𝐸[𝑋𝑋𝑝𝑝𝐹𝐹(𝑋𝑋)𝑟𝑟] = ∫ 𝑥𝑥𝑝𝑝�𝐹𝐹(𝑥𝑥)�𝑟𝑟𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑∞
−∞                                  (29) 

Putting (7) and (8) in (29), followed by algebraic manipulation, we have 

𝛤𝛤𝑝𝑝,𝑟𝑟 = 𝛼𝛼𝛼𝛼𝛼𝛼
𝜆𝜆(−𝑒𝑒−𝜁𝜁+1)1+𝑟𝑟

∑ (−1)𝑟𝑟+𝑗𝑗

𝑗𝑗!
�𝑟𝑟𝑖𝑖�

∞
𝑖𝑖,𝑗𝑗=0 (1 + 𝑟𝑟)𝑗𝑗 ∫ 𝑥𝑥𝜌𝜌−𝛼𝛼−1∞

−∞ �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−[𝜌𝜌(𝑖𝑖+𝑗𝑗)+1]

              (30) 

=
𝜌𝜌𝜌𝜌𝜆𝜆−

𝑝𝑝
𝛼𝛼�

(−𝑒𝑒−𝜁𝜁 + 1)1+𝑟𝑟
�

(−1)𝑟𝑟+𝑗𝑗

𝑗𝑗!
�
𝑟𝑟
𝑖𝑖
�

∞

𝑖𝑖,𝑗𝑗=0

(1 + 𝑟𝑟)𝑗𝑗𝜁𝜁𝑗𝑗𝐵𝐵 ��1 − 𝑝𝑝
𝛼𝛼� �,

𝑝𝑝 + 𝛼𝛼[𝜌𝜌(1 + 𝑗𝑗) − 1]
𝛼𝛼

+ 1� 
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3.5. Order statistics 

In real life experiment order statistics plays a very crucial and informative role  
in understanding the concepts of system reliability. Randomly selecting samples from 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution and arranging them in increasing/decreasing other of magnitude, i.e. 
(𝑇𝑇1:𝑛𝑛 < 𝑇𝑇2:𝑛𝑛 < ⋯ < 𝑇𝑇𝑛𝑛:𝑛𝑛), constitute an ordered sample which can be investigated as 
order statistics. 

3.5.1 Derivation of the 𝒋𝒋𝒕𝒕𝒕𝒕 order statistics 

Consider 𝑋𝑋(𝑗𝑗:𝑛𝑛) denoting the 𝑗𝑗𝑡𝑡ℎ ordered sample from the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution given 
in (8). Then the Probability density for the 𝑗𝑗𝑡𝑡ℎ order statistics is  

𝑓𝑓𝑗𝑗�𝑥𝑥(𝑗𝑗),𝛹𝛹� = 1
𝐵𝐵(𝑗𝑗,𝑛𝑛+𝑗𝑗+1)

�𝐺𝐺�(𝑥𝑥(𝑗𝑗),𝛹𝛹��𝑛𝑛−1𝑔𝑔�𝑥𝑥(𝑗𝑗),𝛹𝛹��1 − 𝐺𝐺�(𝑥𝑥(𝑗𝑗),𝛹𝛹��𝑛𝑛−𝑗𝑗             (31) 

where 𝛹𝛹 = (𝛼𝛼, 𝜌𝜌, 𝜁𝜁, 𝜆𝜆). Further simplification using Taylor series expansion gives 

𝑓𝑓𝑗𝑗�𝑥𝑥(𝑗𝑗),𝛹𝛹� = 1
𝐵𝐵(𝑗𝑗,𝑛𝑛+𝑗𝑗+1)

∑ (−1)𝑖𝑖�𝑛𝑛−𝑗𝑗𝑖𝑖 �
∞
𝑖𝑖=0 �𝐺𝐺�(𝑥𝑥(𝑗𝑗),𝛹𝛹��𝑛𝑛+𝑖𝑖−1𝑔𝑔�𝑥𝑥(𝑗𝑗),𝛹𝛹�             (32) 

Inserting (7) and (8) in (32) followed by further simplification using Taylor series, 
we have 

𝑓𝑓𝑗𝑗�𝑥𝑥(𝑗𝑗),𝛹𝛹� =
𝛼𝛼𝛼𝛼𝜁𝜁

𝜆𝜆𝐵𝐵(𝑗𝑗,𝑛𝑛 + 𝑗𝑗 + 1)
� � (−1)𝑖𝑖+𝑘𝑘+𝑙𝑙 �

𝑛𝑛 − 𝑗𝑗
𝑖𝑖

�
∞

𝑗𝑗=𝑙𝑙=0

𝑛𝑛−𝑗𝑗

𝑖𝑖=0

�
𝑖𝑖
𝑘𝑘
� (𝑘𝑘 + 1)𝑙𝑙𝜁𝜁𝑙𝑙+1 

×
𝑥𝑥−𝛼𝛼−1�1+𝑥𝑥

−𝛼𝛼
𝜆𝜆 �

−𝜌𝜌(𝑙𝑙+1)

(−𝑒𝑒−𝜁𝜁+1)𝑖𝑖+1𝑖𝑖!
                                                                                    (33) 

4. Estimation 

Let 𝑥𝑥 = 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 represent a random sample of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution with 
unknown parameter vector 𝛹𝛹 =  (𝛼𝛼, 𝜆𝜆, 𝜌𝜌, 𝜁𝜁). The log likelihood 𝑙𝑙 =  𝑙𝑙(𝑥𝑥,𝛹𝛹) for 𝛹𝛹 is 

𝑙𝑙(𝑥𝑥,𝛹𝛹) = 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝛼𝛼𝛼𝛼𝜁𝜁

𝜆𝜆(−𝑒𝑒−𝜁𝜁 + 1)
� − (𝛼𝛼 + 1)�𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

+ (𝜌𝜌 + 1)�𝑙𝑙𝑙𝑙𝑙𝑙 �1 +
𝑥𝑥−𝛼𝛼

𝜆𝜆
�

𝑛𝑛

𝑖𝑖=1

 

× −𝜁𝜁 ∑ �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−𝜌𝜌

                                                                                            𝑛𝑛
𝑖𝑖=1 (34) 

The score function 𝑈𝑈(𝛹𝛹)  = �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜁𝜁

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇

 has components 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑛𝑛
𝛼𝛼
− ∑ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖)(𝜌𝜌 + 1)∑ 𝑥𝑥−𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝜆𝜆�1+𝑥𝑥
−𝛼𝛼
𝜆𝜆 �

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 + 𝜁𝜁 ∑ 𝜌𝜌 �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−𝜌𝜌
𝑥𝑥−𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1     (35) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑛𝑛
𝜌𝜌

+ ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�𝑛𝑛

𝑖𝑖=1 + 𝜁𝜁 ∑ �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−𝜌𝜌
𝑙𝑙𝑙𝑙𝑙𝑙 �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−𝜌𝜌

𝑛𝑛
𝑖𝑖=1                     (36) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜁𝜁

= 𝑛𝑛
𝜁𝜁
− 𝑛𝑛

�−𝑒𝑒−𝜁𝜁+1�
− ∑ �1 + 𝑥𝑥−𝛼𝛼

𝜆𝜆
�
−𝜌𝜌

𝑛𝑛
𝑖𝑖=1                                                                            (37) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑛𝑛
𝜆𝜆
− (𝜌𝜌 + 1)∑ 𝑥𝑥−𝛼𝛼

𝜆𝜆2�1+𝑥𝑥
−𝛼𝛼
𝜆𝜆 �

𝑛𝑛
𝑖𝑖=1 + 𝜁𝜁 ∑ 𝑥𝑥−𝛼𝛼

𝜆𝜆2�1+𝑥𝑥
−𝛼𝛼
𝜆𝜆 �

𝑛𝑛
𝑖𝑖=1                                                 (38) 
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The maximum likelihood estimate (MLE) 𝛹𝛹�  of 𝛹𝛹 is calculated numerically from 
the nonlinear equations 𝑈𝑈(𝛹𝛹) = 0. We use Adequacy Model in R to obtain 𝛹𝛹� . 

4.1. Real data applications 

In this section, we analyze two real data sets to demonstrate the flexibility and 
applicability of the proposed 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 model. The first data set, representing strengths of 
1.5 cm glass fibers, was previously studied by Smith and Naylor (1986). The second data 
set contain 40 times to failure of turbocharger of one type of engine and was previously 
studied by Al Sobhi (2022). The two data sets are carefully selected because they are 
negatively skewed and are either over- or under-dispersed. The 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 model is 
compared to the one of the following competitive models: Inverse Lomax Poisson 
(𝐼𝐼𝐼𝐼𝐼𝐼), Inverse Power Lomax (𝐼𝐼𝐼𝐼𝐼𝐼), and Inverse Lomax models. In order to have a fair 
model comparison, we also use the following measures of goodness-of-fit criteria: 
Cramér Von-Mises (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶), Anderson-Darling (𝐴𝐴𝐴𝐴𝐴𝐴), Kolmogorov-Smirnov (𝐾𝐾𝐾𝐾𝐾𝐾), 
as well as those based on the log-likelihood: minus estimated -2*log-likelihood (-2𝑙𝑙), 
Akaike information criterion (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴), consistent Akaike information criterion (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶). 
The model with the minimum values for 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is 
considered to provide the best reasonable fits for the proposed data. Table 2 shows the 
exploratory data analysis for the two data sets which indicates that data I consist of 63 
observations, negatively skewed, over-dispersed, with excess kurtosis of 0.92 that is 
leptokurtic. Data set II consist of 40 observations, under-dispersed, with excess kurtosis 
of -0.56 that is mesokurtic. Tables 3 and 5 gives the estimate of the parameters of the 
distributions considered. 

Table 2. Exploratory data analysis of the two data sets 

Specification 𝑛𝑛 𝑀𝑀𝑀𝑀𝑀𝑀. 𝑞𝑞1 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑞𝑞3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀𝑀𝑀𝑀𝑀. 𝑉𝑉𝑉𝑉𝑉𝑉. 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐼𝐼 63 0.55 1.38 1.59 1.69 1.51 2.24 0.11 3.92 −0.90 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐼𝐼𝐼𝐼 40 1.60 4.95 6.40 7.83 6.17 9.0 3.93 2.44 −0.55 

 

 
Figure 4. Box plot and the Total time on Test (TTT) plot for data set I 
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Figure 4 indicate that data set I is negatively skewed exhibiting an increasing failure 
rate. 
 

Table 3. MLEs, their standard error (in parenthesis), confidence interval (curly) bracket for data set I 

Model 𝛼𝛼 𝜆𝜆 𝜌𝜌 𝜁𝜁 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 12.3939(0.7202) 

{10.9823,13.8055} 
0.0025(0.0007) 
{0.0011,0.0039} 

−2.7082(1.329) 
{−5.3130,−1033} 

0.2541(0.1010) 
{0.0561,0.4521} 

𝐼𝐼𝐼𝐼𝐼𝐼 − 
(−) 

0.3638(0.1939) 
{−0.0162,0.7438} 

−2.2028(2.0980) 
{−6.3149,1.9093} 

0.6170(0.3486) 
{−0.0663,1.3003} 

𝐼𝐼𝐼𝐼𝐼𝐼 11.5729(0.5958) 
{10.4051,12,7407} 

0.0021(0.0004) 
{0.0013,0.0029} 

0.4419(0.0615) 
{0.3214,0.5624} 

− 
(−) 

𝐼𝐼𝐼𝐼 − 
(−) 

10.7375(5.8660) 
{−0.7599,22.2349} 

15.5166(8.3418) 
{−0.8333,31.8665} 

− 
(−) 

 

Table 4. Measures of goodness-of-fit value for data set I 

Model −2𝑙𝑙 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐾𝐾𝐾𝐾𝐾𝐾 𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 25.46 33.46 42.029 36.83 34.15 0.1188 0.8358 0.1521 0.3358 
𝐼𝐼𝐼𝐼𝐼𝐼 57.42 63.42 69.851 65.95 63.83 0.2364 3.2897 0.6001 0.0017 
𝐼𝐼𝐼𝐼𝐼𝐼 30.38 36.39 42.816 38.83 36.79 0.1643 1.3963 0.2534 0.0666 
𝐼𝐼𝐼𝐼 182.48 186.48 190.76 188.16 186.68 0.4889 4.5411 0.8360 1.7e-13 

 
From Table 4 it can be observed that the new developed  inverse Power Lomax 

Poisson model has better fit than other three notable competitive models because it 
possessed the smallest value of the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
as well as largest 𝑃𝑃𝑃𝑃 value in modeling the glass fiber data. 

 
Figure 5. Graph of the fitted density for data set I 
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Figure 5 clearly indicates that 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 model provides a better fit than all other models 
considered in the study. 

Figure 6. Box plot and the Total time on Test (TTT) plot for data set II 

Figure 6 indicates that data set II is negatively skewed without any form of outlier 
exhibiting an increasing failure rate. 

Table 5. MLEs, their standard error (in parenthesis), confidence interval (curly) bracket for data  
set II 

Model 𝛼𝛼 𝜆𝜆 𝜌𝜌 𝜁𝜁 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 1.8844(0.2453) 

{1.6391,2.3652} 
0.0077(0.0040) 

{−0.0001,0.0117} 
29.9580(20.5404) 

{−10.3011,50.4984} 
2.2498(0.3983) 
{1.4691,2.6481} 

𝐼𝐼𝐼𝐼𝐼𝐼 − 
(−) 

10.4091(1.5213) 
{7.4274,11.9304} 

−9.8683(0.3210) 
{−10.4975,−9.2391} 

5.6043(1.2456) 
{3.1629,8.0457} 

𝐼𝐼𝐼𝐼𝐼𝐼 3.5615(0.2042) 
{3.1613,3.5615} 

0.0025(0.0006) 
{0.0013,0.0031} 

− 
(−) 

− 
(−) 

𝐼𝐼𝐼𝐼 − 
(−) 

7.4952(8.9801) 
{−10.1058,25.0962} 

39.5313(6.7337) 
{26.3333,52.7294} 

− 
(−) 

 

Table 6. Measures of goodness-of-fit value for data set II 

Model −2𝑙𝑙 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐾𝐾𝐾𝐾𝐾𝐾 𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 170.08 178.08 184.83 179.22 180.52 0.1038 0.7661 0.1069 0.7817 
𝐼𝐼𝐼𝐼𝐼𝐼 231.62 237.62 242.69 238.29 239.56 0.4346 2.0806 0.3355 5.5e-07 
𝐼𝐼𝐼𝐼𝐼𝐼 182.12 188.12 193.19 188.79 189.96 0.1756 1.5482 0.2406 0.1698 
𝐼𝐼𝐼𝐼 288.66 232.67 236.04 232.99 233.89 0.4411 2.2521 0.3673 3.5e-07 

 
From Table 6 it can be observed that the new developed Inverse Power Lomax 

Poisson model has better fit than other three notable competitive models because it 
possesses the smallest value of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 as 
well as the largest 𝑃𝑃𝑃𝑃 value in modeling the turbocharger data. 
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Figure 7. Graph of the fitted density for data set II 

Figure 7 clearly indicates that 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 model provides a better fit than all other models 
considered in the study. 

Table 7. LR test for the two data sets 

Model Hypothesis 𝐿𝐿𝐿𝐿 𝑃𝑃 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

Data set I 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑣𝑣𝑣𝑣 𝐼𝐼𝐼𝐼𝐼𝐼 𝐻𝐻0:𝛼𝛼 = 1 𝑣𝑣𝑣𝑣.𝐻𝐻1: 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 31.96 < 0.001 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑣𝑣𝑣𝑣 𝐼𝐼𝐼𝐼𝐼𝐼 𝐻𝐻0: 𝜁𝜁 = 1 𝑣𝑣𝑣𝑣.𝐻𝐻1: 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 4.92 < 0.00 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑣𝑣𝑣𝑣  𝐼𝐼𝐼𝐼 𝐻𝐻0:𝛼𝛼 = 𝜁𝜁 = 1 𝑣𝑣𝑣𝑣.𝐻𝐻1: 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 157.02 < 0.001 

Data set II 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑣𝑣𝑣𝑣  𝐼𝐼𝐼𝐼𝐼𝐼 𝐻𝐻0:𝛼𝛼 = 1 𝑣𝑣𝑣𝑣.𝐻𝐻1: 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 61.54 < 0.001 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑣𝑣𝑣𝑣 𝐼𝐼𝐼𝐼𝐼𝐼 𝐻𝐻0: 𝜁𝜁 = 1 𝑣𝑣𝑣𝑣.𝐻𝐻1: 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 12.04 < 0.001 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑣𝑣𝑣𝑣  𝐼𝐼𝐼𝐼 𝐻𝐻0:𝛼𝛼 = 𝜁𝜁 = 1 𝑣𝑣𝑣𝑣.𝐻𝐻1: 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 58.58 < 0.001 

 
It can be observed from Table 7 that in each of the cases considered we accept the 

alternative hypothesis which is enough evidence that the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 model has a better fit 
than all other models considered for the two data sets and can effectively be used for 
fitting the data.  

5. Concluding remarks  

We have developed and studied the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution along with its properties 
such as moments, incomplete moments, weighted moments, moment generating 
functions, Rѐnyi and 𝑞𝑞 entropies, Bonferroni and Lorenz curves, reliability studies, 
stress-strength reliability and multi component stress-strength reliability model. 
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Maximum likelihood estimates are computed. Goodness-of-fit shows that the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 
distribution is a better fit. Applications of the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 model to glass fiber and 
turbocharger data are presented to demonstrate its greater significance and better 
flexibility. We have shown that the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 distribution empirically provides reasonable 
fit for both the glass fiber and turbocharger data as supported by the graph of fitted 
densities and the likelihood ratio test statistics. In view of the shapes of the density and 
failure rate function, it can be concluded that the proposed model is a suitable candidate 
model in reliability analysis, data modeling, and other related fields. For future study, 
bivariate extension of the Inverse Power Lomax Poisson model can be considered. 
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